飛思卡爾半導(dǎo)體公司系統(tǒng)工程師 高德鈞(Vincent Ko)
發(fā)光二級(jí)管(LED)技巧面世已有大約半個(gè)世紀(jì)。發(fā)光二級(jí)管是一種能在電壓呈現(xiàn)偏差時(shí)發(fā)光的半導(dǎo)體設(shè)備。由于具有低功率和低電壓運(yùn)行的特點(diǎn),該技巧很快利用于各種電子設(shè)備的狀態(tài)唆使。LED 技巧的應(yīng)用壽命通常非常長(zhǎng),一般可達(dá)10 年,遠(yuǎn)遠(yuǎn)擅長(zhǎng)其它傳統(tǒng)照明技巧(例如白熾燈管和熒光燈管)。這就使人們非常盼看將LED 技巧利用到更廣泛的照明利用中。
最近面世的新技巧使LED 能夠達(dá)到更高的功率程度。LED 能夠達(dá)到一瓦特的程度,有些甚至高達(dá)5 瓦特,每瓦特能發(fā)出18-44 流明(lumen)的光明。這種LED設(shè)備稱為高亮LED(HB-LED)。由于效率方面的明顯改良,HB-LED 正被敏捷用于多種照明利用。
下面是這些利用的一些例子:
• 交通信號(hào)燈
• 平面顯示設(shè)備的背景照明裝置
• 閃光燈
• 家庭照明
HB-LED 具有非線性I-V 特點(diǎn),非常類似于二極管,HB-LED 只能在直流電單向輸送到設(shè)備時(shí)才干點(diǎn)亮,一般稱之為正向電流IF 。通過HB-LED 的壓降則稱為正向電壓VF。要讓HB-LED 實(shí)現(xiàn)最高亮度,通過HB-LED 的正向電流必需保持恒定程度。在一般的1W HB-LED 而言,正向電流需保持在大約350mA 的程度,而相應(yīng)的正向電壓則大約為3.4V,HB-LED 便能達(dá)到其最大亮度。
正向電流IF 和正向電壓VF 有著非常緊密的關(guān)系,VF 呈現(xiàn)小的變更亦會(huì)引起IF 產(chǎn)生較大的轉(zhuǎn)變。HB-LED 驅(qū)動(dòng)的幻想電源是恒定電源。實(shí)際上,恒定電流通常通過閉合回路電流把持直流-直流轉(zhuǎn)換器(DC-DC converter)來實(shí)現(xiàn)。市場(chǎng)上有很多基于獨(dú)立模仿組件、本錢相對(duì)較低的DC-DC 轉(zhuǎn)換器解決計(jì)劃。然而,基于微把持器(MCU)的解決計(jì)劃可為系統(tǒng)設(shè)計(jì)帶來更大的機(jī)動(dòng)性。除了普通照明以外,這種把持器還能為終極利用供給足夠的處理功效以支撐額外的特征。因此它仍然具有較大的吸引力。
基于MCU 的設(shè)計(jì)的部分長(zhǎng)處如下:
(1) 燈光明度調(diào)節(jié)和閃耀可以通過MCU 軟件輕松實(shí)現(xiàn),而無需向系統(tǒng)中增裝其它組件。
(2) 不同功率或不同品牌的HB-LED 具有不同的特點(diǎn),MCU 可以通過軟件編程以滿足不同的驅(qū)動(dòng)請(qǐng)求。在這種情況下,照明設(shè)備制作商可以減少庫(kù)存的類型,進(jìn)而簡(jiǎn)化物流處理工作。
(3) 很多MCU 具有芯片閃存,可以用于利用中的數(shù)據(jù)存儲(chǔ)。例如,在實(shí)行燈光明度把持功效時(shí),芯片閃存可用于保留亮度級(jí)別。每次打開燈光時(shí)可以主動(dòng)恢復(fù)上一次的亮度級(jí)別。
(4) 除照明外,MCU 還可以處理幾種功效,如不同類型的連接尺度(如Zigbee、RS232 和LIN 等)亦可以通過MCU 芯片模塊輕松實(shí)行。
拓?fù)?/strong>
HB-LED 驅(qū)動(dòng)需要恒定電源。它通常需要閉環(huán)把持。有時(shí)系統(tǒng)采用電池供電,電池電壓會(huì)隨時(shí)間而不斷降落。在電池電量全部用完之前,需要反饋把持回路來保持恒定的驅(qū)動(dòng)電流。此外HB-LED 的正向電壓VF 會(huì)隨四周環(huán)境溫度的變更而變更,因此需要閉環(huán)把持來補(bǔ)償VF 的變更,以便保持正向電流IF 以及HB-LED 亮度的穩(wěn)固。
人們一般采用轉(zhuǎn)換模式調(diào)節(jié)方法而不是直線調(diào)節(jié)方法來驅(qū)動(dòng)HB-LED。開關(guān)調(diào)節(jié)器有著更高的功效轉(zhuǎn)換效率及較適實(shí)用于數(shù)字設(shè)計(jì)上。
假設(shè)電源電壓是高于所需的HB-LED 正向電壓,開關(guān)調(diào)節(jié)器會(huì)通過電源電壓斬波來進(jìn)行整流,把持?jǐn)夭〞r(shí)的占空比可以把持輸出的均勻電流。斬波機(jī)制的履行很簡(jiǎn)略,只需應(yīng)用一個(gè)功率場(chǎng)效應(yīng)晶體管(MOSFET)充當(dāng)開關(guān)來斷開電源和用電設(shè)備之間的電流。MOSFET 由脈寬調(diào)制(PWM)輸出把持,其中的斬波頻率亦相即是PWM輸出的頻率。
通常情況下,假如電源電壓和所需的負(fù)載電流都是恒定的,則不需要任何反饋把持環(huán)路(如圖1 所示)。開關(guān)調(diào)節(jié)器可以通過調(diào)節(jié)斬波頻率或其占空比來把持設(shè)備的均勻電流。然而有些情況這種拓?fù)洳⒉粚?shí)用。如所需設(shè)備電流比擬大時(shí),切斷電流會(huì)產(chǎn)生較大的電流尖峰,而這可能會(huì)影響系統(tǒng)的電磁干擾(EMI)性能。
圖1:直接斬波拓?fù)?/i>
假如不要讓設(shè)備上的電流被切斷,則必需應(yīng)用能源存儲(chǔ)設(shè)備來確保當(dāng)電源被切斷時(shí),電流亦不會(huì)被立即切斷。一個(gè)明智的選擇是在設(shè)備的電路路徑上添加電感。在PWM循環(huán)過程中,能量保留在電感中。電源被切斷時(shí),保留的能源開釋出來,持續(xù)為設(shè)備供電。這種拓?fù)浞Q為buck 變換器(buck converter)。圖2 是常見buck 變換器的示意圖。
圖2:Buck變換器拓?fù)?/i>
Buck變換器
Buck 變換器只能用于履行降壓把持,就是當(dāng)電源電壓是高于所需要的設(shè)備電壓時(shí)。如圖2 所示,當(dāng)電源開關(guān)SW1 閉合時(shí),輸進(jìn)電壓VIN 連接到電感L 的輸進(jìn)端。逆向偏壓二極管能確保設(shè)備電流在一個(gè)方向上傳輸。與此同時(shí),電感中保留的能源不斷增加。當(dāng)電源開關(guān)斷開時(shí),電感中保留的電能開釋出來,電流流經(jīng)二極管持續(xù)供給應(yīng)設(shè)備。電感中存儲(chǔ)的電能逐漸減少,設(shè)備電流亦開端降落。Buck 變換器的重要電能存儲(chǔ)設(shè)備是電感。電感的設(shè)計(jì)必需確保有足夠的電能存儲(chǔ)空間,滿足電源封閉期間(SW1 打開)的設(shè)備電源請(qǐng)求。對(duì)于HB-LED 利用,HB-LED 需在恒定電流下工作,buck 變換器亦被認(rèn)為只在持續(xù)導(dǎo)通狀態(tài)(continuous conduction mode ) 下運(yùn)行。
感應(yīng)器電流有兩種狀態(tài):通流狀態(tài)(SW1 閉合)和斷流狀態(tài)(SW1 打開)。處于通流狀態(tài)時(shí),電感的電流開端直線上升,電流的最大變更可以應(yīng)用下列公式盤算:
其中tON 是SW1 閉合的時(shí)間。VOUT 是設(shè)備RL上的電壓。同樣,處于斷流狀態(tài)時(shí),電感電流在SW1 打開期間降落,電流的最大變更可以應(yīng)用以下公式盤算:
其中tOFF 是SW1 打開的時(shí)間。VD 表現(xiàn)二極管上的電壓。假設(shè)tON 與tOFF 之和是開關(guān)時(shí)間的總是非T,那么tON 亦可以盤算為:
其中D 是閉合時(shí)間的占空比。在幻想情況下,逆向二極管的壓降VD 為零,打開和封閉狀態(tài)之間的電感電流之和是恒定的。如公式(4)所示,我們可以很輕易地推斷出來,buck 變換器的輸出電壓增益即是占空比D 而且永遠(yuǎn)小于1。
公式(1)和(2)定義了輸出負(fù)載上的最大紋波電流。假如定義了可接收的紋波電流IL、開關(guān)頻率SW1(1/T)、電源電壓VIN 和目標(biāo)輸出電壓VOUT,則可以通過公式(1)和(3)盤算出所需的電感值。@@@@@@@@@@
閉環(huán)把持
應(yīng)用 buck 變換器驅(qū)動(dòng)HB-LED 時(shí),系統(tǒng)必需能夠保持恒定的輸出電流。輸出電壓或輸出電流通過轉(zhuǎn)變電源開關(guān)SW1 的占空比直接進(jìn)行把持。非常廣泛的做法是采用低歐姆電阻(通常1Ω - 5Ω)作為電流感應(yīng)器來監(jiān)控HB-LED 的正向電流。該電阻將正向電流轉(zhuǎn)換成電壓,并與恒定參考電壓VREF 進(jìn)行比擬。VREF 是預(yù)先定義的,而對(duì)應(yīng)于所需的目標(biāo)負(fù)載電流。假如電流感應(yīng)器電壓高于參考電壓,則表現(xiàn)負(fù)載電流高于目標(biāo)電流。反饋環(huán)路會(huì)減少占空比D 來驅(qū)動(dòng)電源開關(guān)。相反,假如電流感應(yīng)器電壓低于參考電壓,占空比D 則會(huì)增加。圖3 為閉環(huán)把持buck 變換器的示意圖。
圖3:閉環(huán)把持buck變換器
在某些情況下,電源電壓VIN 并不穩(wěn)固,比如在利用電池為系統(tǒng)供電時(shí)。無論采用什么電源,要讓輸出電流保持一個(gè)恒定程度,就必需應(yīng)用獨(dú)立于電源電壓的一個(gè)參考電壓VREF。在所有備有模仿數(shù)字轉(zhuǎn)換器(ADC)或模仿比擬器(ACMP)的飛思卡爾S08 和RS08 MCU 芯片系列,內(nèi)部都帶有隙電壓參考。該參考電壓獨(dú)立于MCU 的電源電壓VDD,通過MCU 中的專用把持存放器啟動(dòng)。
MC9RS08KA2 系統(tǒng)
對(duì)于普通的 HB-LED 利用,MCU 把持系統(tǒng)的反饋回路。它丈量HB-LED 正向電流并調(diào)節(jié)電源開關(guān)的占空比,將HB-LED 亮度保持在目標(biāo)程度。因此,MCU 必需至少具有PWM驅(qū)動(dòng)功效。通常情況下,30KHz -100KHz 的PWM輸出頻率就足夠了。此外,MCU 應(yīng)當(dāng)能夠履行電壓丈量,這是閉環(huán)把持系統(tǒng)必需的。
很多飛思卡爾MCU 都能用于HB-LED 照明利用。對(duì)于一般的HB-LED 利用,可以應(yīng)用MC68HC908Qxx 系列。它支撐8 針腳封裝,并帶有專用的PWM 模塊和模仿數(shù)字轉(zhuǎn)換(ADC)模塊。對(duì)于本錢敏感型利用,可以應(yīng)用MC9RS08KA2。它也支撐8 針腳封裝,不帶芯片ADC,但包含模仿比擬器 (ACMP),這對(duì)HB-LED 利用來說也已經(jīng)足夠了。
圖4 是基于MC9RS08KA2 的簡(jiǎn)略buck 變換器系統(tǒng)示意圖。在很多情況下,利用電源電壓VIN 與MCU 的電源電壓(VDD)不同。有時(shí)需要應(yīng)用特定的電壓調(diào)節(jié)器(可以是一個(gè)簡(jiǎn)略的接地齊納二極管)將VIN 下降到MCU 把持范疇VDD。此外還需要電平轉(zhuǎn)換器,使MCU 能夠撥動(dòng)電壓高于MCU VDD 的高端開關(guān)SW1。
圖4:基于MC9RS08KA2 的buck變換器系統(tǒng)
HB-LED 的正向電流是通過電阻器RSENSE 丈量的。KA2 收集電壓丈量VSENSE 值,并與簡(jiǎn)易電位計(jì)創(chuàng)立的固定參考電壓VREF 進(jìn)行比擬。假如VSENSE 高于VREF,表現(xiàn)HB-LED 正向電流高于目標(biāo)值。這時(shí)KA2 會(huì)逐漸下降驅(qū)動(dòng)SW1 的占空比,直到VSENSE 下降到參考值以下。相反,當(dāng)VSENSE 低于VREF 時(shí),占空比會(huì)逐漸增加,直到VSENSE 增加到VREF 以上。
亮度把持
HB-LED 驅(qū)動(dòng)電流由參考電壓VREF 定義。如圖4 所示,VREF 由一個(gè)簡(jiǎn)易電位計(jì)定義。VREF 的變更是通過轉(zhuǎn)變電位計(jì)電壓進(jìn)行的。圖4 顯示了實(shí)現(xiàn)這一目標(biāo)的簡(jiǎn)易方法。KA2 的一個(gè)通用輸進(jìn)輸出端(如PTA5)將一個(gè)附加電阻器R3 連接到電位計(jì)上。當(dāng)選擇PTA5 作為輸進(jìn)端時(shí),它便成為高阻抗,R3 漂浮不定,電位計(jì)輸出只由R1 和R2 定義。假如需要更低的參考電壓,PTA5 就變?yōu)榈臀惠敵?,通過R3的附加電流會(huì)下降參考電壓。隨著VREF 的下降,HB-LED 正向電流會(huì)相應(yīng)地調(diào)節(jié)而轉(zhuǎn)變亮度程度。利用雷同的方法可定義出更多的參考點(diǎn)來輸進(jìn)更多亮度程度。
電源電壓的補(bǔ)償
假如利用只需一個(gè)亮度程度,就無需將電位計(jì)連接到 KA2 模仿比擬器的端子上。KA2 比擬器的正極端子已備有內(nèi)部帶隙電源,VSENSE 可以利用此電源電壓參考進(jìn)行比擬。KA2 上有一個(gè)專用把持位可用于啟動(dòng)此電壓參考。當(dāng)該參考啟動(dòng)時(shí),相應(yīng)的MCU 針腳變成通用輸進(jìn)輸出端。帶隙電源電壓程度固定在1.24V 而不受MCU 電源電壓VDD 的影響。
無論VIN 的變更是否反應(yīng)到MCU VDD 上,通過對(duì)照VSENSE 和固定參考點(diǎn)1.24V,MCU 可以調(diào)節(jié)PWM 的占空比,從相應(yīng)地補(bǔ)償VIN a 的變更,而令輸出電流保持一個(gè)恒定程度。
軟件把持回路
KA2 沒有專用的PWM模塊。在軟件設(shè)計(jì)的主循環(huán)中,可以監(jiān)控來自RSENSE 的反饋電壓,并產(chǎn)生PWM把持的波形作為SW1 的開關(guān)把持。PWM打開狀態(tài)和封閉狀態(tài)的是非由芯片定時(shí)器溢出的時(shí)間斷定。
圖5 顯示了一般的軟件把持流程。重啟后,MCU 開端初始化程序。PWM打開時(shí)間初始化為它的最小值。主把持回路保留兩個(gè)變量:打開時(shí)間和封閉時(shí)間變量。這兩個(gè)變量按相反方向調(diào)節(jié),以便將整體時(shí)間是非保持在恒定程度。打開時(shí)間和封閉時(shí)間一同斷定可調(diào)節(jié)的占空比,該值和軟件開銷共同定義PWM周期的是非。
圖5:MC9RS08KA2 的軟件把持流程
任何用以履行其它功效(如亮度調(diào)節(jié))的人機(jī)界面都可以添加到軟件的主把持循環(huán)上。添加的軟件編碼被視為軟件開銷,會(huì)影響整體PWM輸出周期的是非。PWM輸出周期是非應(yīng)保持恒定,由要把持循環(huán)中履行的CPU 周期總數(shù)斷定。所需的PWM頻率越高,主把持循環(huán)的編碼預(yù)算越低。例如,假如PWM頻率請(qǐng)求為50KHz,KA2 答應(yīng)的最大總線頻率為10MHz,在這種情況下主把持循環(huán)必需保持
在200 個(gè)CPU 周期。該數(shù)字包含軟件開銷及SW1 打開時(shí)間和封閉時(shí)間的總和(也就是可調(diào)節(jié)的占空比)。比如說,假如打開時(shí)間和封閉時(shí)間總和為128 個(gè)CPU 周期,則200 個(gè)周期中的72 個(gè)就成了軟件開銷,該主循環(huán)的可把持占空比范疇則為72/200=36% 到100%。
結(jié)語
基于MCU 的解決計(jì)劃可為利用供給全面機(jī)動(dòng)性。目前,即使最低真?zhèn)€8 位MCU都具有足夠的CPU 帶寬,不僅能履行DC-DC 把持,還可以在利用中增加更多功效而幾乎不需要增加本錢。MCU 的設(shè)計(jì)目標(biāo)是實(shí)現(xiàn)全面的解決計(jì)劃。飛思卡爾供給的MCU 亦聲援各種通信尺度,如射頻(RF)連接范疇的Zigbee 、有線連接范疇的LIN、CAN 和DMX512 等,這為L(zhǎng)ED 照明供給了宏大的利用空間。